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It is shown that at high frequencies matrix elements of the Green's function of a 
random discrete wave equation decay exponentially at long distances. This is 
the input to the proof of dense point spectrum with localized eigenfunctions in 
this frequency range. The proof uses techniques of Fr6hlich and Spencer. A 
sequence of renormalization transformations shows that large regions where 
wave propagation is easily maintained become increasingly sparse as resonance 
is approached. 
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1. I N T R O D U C T I O N  

Wave propagation in a random medium is important on the atomic level 
and on the macroscopic level. On the atomic level the waves are electron 
waves obeying the Schr6dinger equation. It is the random impurities and 
irregularities in a metal that are responsible for the resistance to the flow of 
a current. On the macroscopic level the waves of interest are elec- 
tromagnetic waves or other waves obeying the wave equation. In both 
cases there is a widely accepted nonrigorous theory of radiative transport. 
The basis of this theory is a perturbation expansion in the amount of the 
disorder in the medium. It predicts that the phase of the wave averages to 
zero, while the intensity of the wave diffuses through the medium. 

Anderson (1~ observed that this radiative transport theory should fail in 
a situation with a large amount of disorder. In fact, in this situation there 
should be only standing waves. This phenomenon is called localization. It is 
now believed on the basis of various theories, including refinements of the 
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perturbation approach, (2) that localization is typical in one- and two- 
dimensional problems. This is because strong backscattering dominates, 
due to a low-frequency divergence. The one-dimensional case is now well 
understood.~3) 

The most conspicuous open problem is to prove that there is diffusion 
in three dimensions at low disorder, as predicted by the transport theory. It 
would also be nice to have a better understanding of localization in dimen- 
sions greater than one. Recently Fr6hlich and Spencer (4) and others have 
made progress on localization for discrete Schr6dinger equations. A key 
role is played by the existence of large forbidden regions, which are due to 
the fact that the spectrum of the unperturbed operator is bounded and the 
potential has large fluctuations. Martinelli and Holden (5) have a similar 
result for the continuum equation; they use the fact that the spectrum of 
the unperturbed operator is bounded below, and so fluctuations can create 
large regions where low-frequency propagation is forbidden. 

The wave equation should behave similarly to the Schr6dinger 
equation, except that the medium and the frequency are related in a 
somewhat different way. (6) Extending the results of Fr6hlich and Spencer to 
discrete wave equations requires the solution of certain technical problems, 
which are solved in the present paper. 

The key results of Fr6hlich and Spencer (4) are estimates on the Green's 
function (resolvent) of a random discrete Schr6dinger equation with large 
disorder or at high or low frequency. The purpose of this paper is to 
present a similar result for a discrete wave equation with multiplicative off- 
diagonal random terms. The main result is a decay estimate on matrix 
elements of the Green's function at high frequency. This estimate is the 
input to a proof of dense point spectrum at high frequency/v) Both parts of 
the proof, the estimate and the spectral implications, are outlined in con- 
ference proceedings. (8) The final result is that a random medium described 
by such an equation has only localized standing waves in this frequency 
range. 

The general plan is to follow the lines of the Fr6hlich and Spencer 
proof. However, there are differences between their discrete Schr6dinger 
equation and the discrete wave equation studied here. One is that the ran- 
dom terms are multiplicative rather than additive. This means that locally 
the spectrum is scaled rather than shifted. This changes the character of the 
density of states bound that is used to control the near-resonance situation. 
Another is that the coupling between regions is random. This must be 
taken into account in the path expansion that is the starting point for the 
analysis. 

The strategy of the proof is to work at fixed frequency. The first step is 
to obtain a decay estimate on the Green's function in a "forbidden region" 
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where no resonance can occur. This is accomplished by the path expansion 
of Section 2. 

The next step is to get a complementary estimate that will give at least 
crude control over the Green's function in the regions near resonance. This 
is the resonance bound of Section 3. It says that strong resonances are 
unlikely in moderate-sized regions. 

These estimates are then used as the input to the Fr6hlich-Spencer 
renormalization construction. This construction is based on the introduc- 
tion of successively larger and more resonant regions, as indicated in Sec- 
tion 4. The perturbation argument of Section 5 shows that including these 
near-resonant regions does not destroy the decay estimate. The resonance 
bound then shows that these regions tend to become sparse on large dis- 
tance scales. This probability argument is outlined in Sections 6 and 7. 

The position space for our discrete problem is the v-dimensional lattice 
~v. A site x is a point in 2 v. The discrete Laplace operator is defined by 

d f ( x ) =  ~ f ( y ) - f ( x )  ( l)  
lY - x l  - 1 

Let c be a function from 2 v to [0, oo), the localpropagation speed. The dis- 
crete wave equation of interest is 

~ 2 w / & 2  = c 2 A w  (2) 

It is convenient to change variable by w =  cu to bring this to the self- 
adjoint form 

~2U/~12 = e A e u  ( 3 )  

The problem may now be given a Hilbert space formulation. Let 
= 12(Z~). Define the operator H acting in this space by 

H f  = - c  d c f  (4) 

The discrete wave equation becomes 

c~2u/& 2 + Hu = 0 (5) 

The spectral properties of H will determine the nature of the solutions. 
From now on we will assume that there are constants a and M such 

that the local propagation speed function c satisfies 

O<a<<. c2 <<.M < oo (6) 



480 Faris 

Under this assumption the quadratic form of H is equivalent to the 
quadratic form of - A  and so H is a positive self-adjoint operator. ~ Since 
- A  is bounded above by 4v, H is bounded above by 4vM. 

We actually want the local propagation speed function to be random. 
We take the simplest such model, in which the c(x) at the sites x are 
independent, identically distributed random variables. The common dis- 
tribution of the c(x) 2 is assumed to be absolutely continuous with density p 
supported on the interval [a,M]. We say that the high-frequency 
propagation is b-bounded if this density satisfies the bound 

p(E) <~ b/E (7) 

This parameter b will be a measure of the concentration of the distribution, 
so that small b implies large disorder. Notice that 

1 = p(E) dE<~ b log - -  (8)  
a 

Thus, large disorder implies that the ratio of the bounds M/a is large. This 
may always be accomplished by taking a > 0 sufficiently small. 

For  each site x in 7/~ let ~b X be the function that is one at that site and 
zero elsewhere. This is a unit vector in the Hilbert space ~ .  

T h e o r e m  1. Let m < oo be a prescribed decay constant. Let M <  oo 
be an upper bound on the c(x) 2. Let 0 <fi  < 1 be a prescribed fraction. 
Then there exists a sufficiently small b > 0, so that if the high-frequency 
propagation is b-bounded, then for every E with 4vflM<< E<~ 4vM there 
exists a random variable K <  oo so that with probability one for all e > 0 
and all sites x in Z v, 

l <e)~, (H- E -  ie)-' ~bo) I <. Ke -mlxl (9) 

The theorem says that given a prescribed decay constant m < oo and a 
restriction on the range of frequency E, then for sufficiently large disorder 
the Green's function at fixed frequency E decays exponentially with that 
decay constant. The rest of this paper is devoted to proving the theorem. 

Corollary 2. Assume that the decay constant m is taken with 
m > 0. Then in the situation described in the theorem 

<~bo, (H-E)  -2 ~bo) < co (m) 

with probability one. 
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Proof. By the dominated convergence theorem 

(Oo, (H-E)  2~bo)=lim(~bo, [ ( H - E ) 2 + e 2 ] - l ~ b o )  (11) 
~ 0  

However, 

(~bo, [ ( H - E ) 2  +e2] -1 ~bo) = I I (H-E- ie )  -1 ~bo[I 2 

= ~ l ( ~ b x , ( H - E - i e )  1~bo>12 
x 

<<.K~e mlxL < OO (12) 
x 

This completes the proof. | 

The importance of this corollary is that it has been proved (7) by an 
extension of the methods of Ref. 10 that this estimate, together with the 
independence of the c(• and the absolute continuity of their distributions, 
implies that the only possible spectral type in this range of frequency is 
point spectrum. In terms of wave propagation this says that a sufficiently 
large amount of disorder produces a situation where there are only 
standing waves at the higher frequencies. 

2. T H E  N O N R E S O N A N T  R E G I O N  

In the following we shall often use the discrete Laplace operator H A 

associated with a finite subset A of 7/~, with Dirichlet boundary conditions. 
This operator is defined in the Hilbert space ~A = 12(A). The only change 
in the definition is that the terms that couple the region A to its com- 
plement are missing. 

The first task is to establish exponential decay in a large nonresonant 
region. Let m 0 be a prescribed decay rate constant. Let c~>0 be a 
parameter defined by 

2v(2~cr -------~- - e - m0 2v + 1 ( 13 ) 

Thus, small c~ corresponds to large m 0. Define the - l t h  gentle region Sg_l 
to be the set of sites x where only low-frequency propagation is permitted: 

Sgl = { x  ] e ( x )  2 ~ e/~M} (14) 

The next result shows that there is exponential decay in this region. 

822/46/3-4-4 
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P r o p o s i t i o n  3. Assume that A cc s g  1. Then, for E>~ 4v~M 

I ( O x , ( H A - E - i e )  1 ~by)l ~< C exp( -m0 I x -  yl) (15) 

where C = e -m~ = (2v + 1 )/[2v(2 - c~)/~M]. 

Proof. Write 

H A - E -  ie = D + Q (16) 

where D is multiplication by d(x)=  2vc(x) 2 -  E - i e  and Q has the matrix 
element c(x)c(y) at nearest neighbor sites x and y. Then 

( H A _ E _ i ~ ) - . I = ( D + Q )  1= ~ D I(QD-1)" (17) 
n--0 

It follows that (q~x, (HA- E--i6) -1 ~y) is the sum over all paths from x to 
y of a product along the sites z of the path of expressions c(z)2/d(z), except 
that the two ends of the path contribute only c(x)/d(x) and c(y)/d(y). We 
use the estimate 

c(z) 2 
[d(z)i ~< 2v(2~- c~) (18) 

on the sites interior to the path. The endpoints contribute two factors of 
c([-2v(2 - c~)] times an extra factor of 1/c~flM. From the definition of ~ we 
see that we get a factor exp(-mo)/ (2v+ 1) for each site along the path. 
Since the number of sites in a path from x to y exceeds the distance Ix-Yi  
by at least one, this gives an exponential decay factor exp(-m0)  
exp( -mo Ix-Yl).  The remaining factor is 1/(2v+ 1) for each site of the 
path. This is precisely the path expansion of ~bx, ( - ~  + 1) -1 Cy) ~< 1. The 
remaining constants are the constants in the statement of the theorem. | 

Now that we have established exponential decay in the - l t h  gentle 
set, it would be nice to know that this set is large. The following 
proposition is a step in this direction. 

P r o p o s i t i o n  4. For every x ~ E  ~ 

P[X ,~ SE1 ] ~ b log(1/aft) (19) 

Proof. 

P[x  r S g 1] ~< PEc(x) 2 > c~/3m] ~< J~M E dE = b log (20) 

This is the desired estimate. | 
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It follows from this proposition that the proportion of points in the 
complement of the - l t h  gentle set Sg~ can be made arbitrarily small by 
taking b sufficiently small. On the other hand, there will be arbitrarily large 
finite sets in this complement. Consequently, we will have to examine the 
behavior of the Green's function on increasingly resonant subsets of the 
complement. 

3. THE RESONANCE B O U N D  

The crucial step in controlling the Green's function in the more 
resonant regions is a lemma that shows that it is improbable that the 
operator norm of the Green's function is large in a moderate-sized region. 
This is a consequence of the following density of states bound. Such a 
result was proved for the Schr6dinger equation by Wegner. (11) The follow- 
ing proof for the wave equation was suggested by SimonY 2) 

Let NA(S ) be the number of eigenvalues of HA in the Theorem 5. 
set S. Then 

fs dE g[NA(S)] <<,b IAI "-E (21) 

This result says that the density of states per unit volume and unit fre- 
quency is bounded by b/E. 

Proof. The proof is based on the following lemma. (7/ The lemma is 
proved using a general theory of rank-one multiplicative perturbations. It 
says that averaging over the parameter of the perturbation produces a 
measure that is absolutely continuous with respect to the spectral 
parameter. 

Lemma 6. Fix x in A. Fix the values of the c(y) for y r x. Let S be 
a set of positive real numbers, and let I s(HA) be the corresponding spectral 
projection of H A . Then 

dctx) ! c dE 
; (~x ,  ~ 2 Js E ls(HA) (22) 

This lemma may be used to bound the conditional expectation of 
(~bx, ls(HA) ~bx) given the c(y) with y # x. Since the probability measure is 

p(C(X)2) de(x)2 ~ c(x) ~b  _ de(x)2 =c~xb) dc(x) (23) 

the bound is b ~s dE/E. 
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It follows that the expectation g[(~bx, ls(HA)~bx> ] has the same 
bound. The theorem follows by summing over x and noting that the trace 
of ls(HA) is just NA(S). | 

Notice that the expectation on the left-hand side of the inequality in 
the statement of the lemma is an upper bound for the probability 
~[NA(S) # 0]. Thus, the lemma may be used to show that there is a high 
probability of a small gap in the spectrum. The following theorem is the 
resulting resonance bound. 

Theorem 7. The operator H A in region A satisfies the norm bound 

~[II(HA-E) 111 ~>?]~<4 b [A___~] (24) 
E "/ 

for 7 > 2/E. 

ProoL Take S =  [E-~c ,  E +  ~c]. Then by the theorem 

~ [ N A ( [ E - ~ c ,  E +  ~c]) # O] ~<b [ A I -  
2/s 

(25) 
E--h ;  

Take x =  1/7. | 

We want to apply this resonance bound to regions A with large 
volume IAI. In order to have a useful estimate, we must be content with 
even larger bounds 7- 

4. THE R E N O R M A L I Z A T I O N  C O N S T R U C T I O N  

The rest of the argument is to apply the proof that Fr6hlich and 
Spencer (4) gave for the case of the Schr6dinger equation to show that the 
initial decay estimate and the estimate on the probability of resonance 
imply the final decay estimate. Their proof is intricate, and there are 
numerous technicalities; there is no reason to repeat it here. However, the 
ideas are interesting, and so the remainder of the paper contains an outline 
of some of the essential points. 

For one part of the proof it is necessary to put the problem into a 
finite box (subset of 2v), and impose Dirichlet boundary conditions on the 
boundary. If the estimates are independent of the box, then they will carry 
over to all of 2 v. From now on, points in 7/v are assumed to be in the box, 
and subsets of 2 v are assumed to be contained in the box. 

The procedure for obtaining the estimate on the decay constant is 
renorrnalization for distances on increasing scales. One starts with a region 
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in which one already has an estimate on a certain scale. The renor- 
realization is the process of obtaining a new estimate in a larger region for 
distances exceeding a larger scale, in terms of the estimate in the previous 
regions. 

The regions that are introduced in the process of renormalization are 
the gentle regions S g l ,  S g, Sf ,  S~,... with successively larger distance scales 
d 1, do, d~, d2,..., and corresponding resonance bounds "/-1, 7o, 71, Y2,-... 
The distance scales and resonance bounds are prescribed in advance. 

The initial gentle region s g l  was already introduced in Section 2. It is 
the union of all one-point sets {• } for which c(x)2 ~< y_ 1. Here d 1= 1 and 
Y- 1 = cq~M. The decay constant is already estimated in S g_ 1. The other gen- 
tle regions will be made out of sets C satisfying certain conditions. 

A set C c 7/v is said to be i-small if its diameter is less than d i. 
C v A set C Z is said to be i+  1-surrounded by another set B if every 

point in 2 v that is within a distance 2di+l of C is either in B or in C. 
If C c Z v, then the/-neighborhood C is the set of all x in 2v within 4di 

of C. The set C is said to be i-nonresonant if ] l ( H e - E )  -111 ~< 7i. Notice that 
this says that the propagation is not resonant in a whole/-neighborhood of 
C. If this bound is violated, then C is called i-resonant. 

The renormalized gentle regions S, e for i =  0, 1, 2 .... are defined induc- 
tively. Assume that the previous gentle regions S~1,... , Sg~  are already 
defined. The new gentle region Sg is defined as the maximal union of non- 
empty disjoint sets C that are disjoint from the previous gentle regions and 
satisfy: 

(a) C is /-small. 

(b) C is i +  1-surrounded by the union of the previous gentle regions 
sg- 1 ..... S g  1. 

(c) C is i-nonresonant. 

This process terminates: the finite box is contained in the union of 
finitely many of the gentle regions Se g. In fact, eventually, for some i, the 
diameter of the box will be exceeded by d~, and the resonance of the box 
will be less than y~. If there are points that are not in the union of the 
previous gentle regions, then they form a component of the final gentle 
region S g. (Of course, the estimates cannot depend on when the process 
terminates, since then they would depend on the box.) 

It is possible to estimate inductively the decay of the Green's function 
in the gentle regions. For  this reason, a point in or subset of 7/v is said to be 
i-renormalized if it belongs to or is contained in the union of the gentle 
regions S g_ 1 ..... S, g- 1. 
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5. THE R E N O R M A L I Z A T I O N  

The conditions (a)-(c) of the renormalization construction are used to 
control the renormalization that passes from scale k to scale k + 1. There is 
an inductive assumption on the size of the decay constant in the union of 
the sets Sg_j,..., Sf  ~ for distance scales exceeding dk. 

The inductive assumption is that at stage k the Green's function is 
estimated for distances exceeding a multiple of d k in every k-renormalized 
region A that satisfies certain technical conditions. The decay estimate on 
the Green's function of HA is that 

](r  ( H A - E - i e ) - '  Cr)] ~<exp(-mk I x - y [ )  (26) 

for Ix - Yl/> G/5. 
This assumption is certainly true for k = 0, since then such a region A 

is contained in the nonresonant region Sgx . 
The inductive step is to pass to a similar estimate for k + 1-renor- 

malized regions. Let A be such a region. By conditions (a) and (b) the 
components C in S g are small on scale dk and surrounded by already 
renormalized regions on scale dk+~. Therefore the decay of the Green's 
function in the union of the sets Sgl,..., S~_1 on scales exceeding dk+l 
compensates for the resonance in C, which is bounded by condition (c). 

The compensation is estimated by a perturbation argument. The 
magnitude of the coupling between adjacent sites x and y is bounded by 
Ic(x) c(y)l ~< M. Thus, introducing a component C of S g has an effect that 
is determined by the geometry of the component, which is of size d, ,  and 
by the degree of resonance, which is 7k. The geometric factor has the effect 
of replacing the mk I x -  yh in the exponent by mk I x -  Y l -  Cmkd~ for some 
constant C. The correction factor mkdk satisfies the estimate 

rn~dk <~ mk(dz,/dk + , ) dk + 1 <~ 5mo(dk/dk + l) Ix - Yl (27) 

for Ix -Yl  >~ d~+ ~/5. The new estimate on the decay constant is thus 

i n k +  t = m k  - -  C ' d k / d k  + t (28) 

for another constant C'. 
This means that for the sum of all the corrections to the estimate of 

the decay constant to be finite, the condition on the distances is given by 

~ (dk/dk+l)< oo (29) 
k ~ l  

In fact, the sum must be small enough so that all the mk stay strictly above 
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zero. This may be accomplished by taking the dk to increase very rapidly, 
according to the rule 

d~ = d~ ~ (30) 

where the distance growth parameter p > 1, and by taking a sufficiently 
large do. 

The resonances must be small enough so that the resulting correction 
is dominated by the geometric correction. This is ensured by taking 

o/~ = exp d; (31) 

with the resonance growth parameter r < 1. 
Since each mk~>m>0,  the final result is that at each scale k, the 

Green's function is controlled on scales exceeding dk in every k-renor- 
realized region A that satisfies certain technical conditions. Namely, the 
Green's function of HA satisfies a decay estimate 

](~b x, ( H ~ - g - i e )  i ~y)] ~<exp(-m I x - y l )  (32) 

for I x - y !  >~d~/5. 

6. R E S O N A N T  S U B S E T S  

The other half of the argument is to show that this renormalization 
process converges. In other words, the problem is to show that a fixed 
region is likely to be renormalized after a finite number of steps, that is, to 
be contained in the union of a finite number of renormalized regions S g. 

In order to accomplish this, it is necessary to show that the S g have 
low density for large k. The reason for this low density is that the construc- 
tion ensures that certain subsets of the S~ are resonant, and resonance is 
improbable. 

A set C is said to be k + 1-isolated from another set D if C is a distance 
at least 2dk + l from D. 

[ . e m m a  8. Let R be a nonempty subset of 2 v. Let C be a com- 
ponent of the set S~. Assume that R c C. Consider j < k. Assume that R is 
j-small. Assume also that R is j +  1-isolated from C\R. Then R is 
j-resonant. 

S u b l e m m a .  R is j +  1-surrounded by the union of previous gentle 
sets S g - 1 ,-.-, Sg- 1 �9 

Proof of Sublemmo. Since R c  C c S~, it follows that R is k +  1- 
surrounded by the union of the gentle sets sg 1,..., S~ 1, together with C\R. 
In particular, it is j + 1-surrounded by this set. 
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By assumption, C'\R is j +  1-isolated from R. Hence, R is j +  1- 
surrounded by the union of the gentle sets Sg l,..., Sg ~. 

Now consider a component  of some S g with j ~< r ~< k - 1. Such a com- 
ponent is r + 1-surrounded by the union of the gentle sets S g_ ~,..., S~_ ~ and 
so is r + 1-isolated from Sg. In particular, it is j + 1-isolated from R. Hence 
R is j + 1-surrounded by the union of the gentle sets S g_~,..., S g 1. | 

Proof of  Lemma. If R were j-nonresonant,  then by the sublemma it 
would satisfy all the conditions to be a component  of Sf. Since Sf  is a 
maximal union of such subsets, R would have already been included as a 
component  of S g. This is a contradiction. | 

The importance of this lemma is that it gives a bound on the 
probability of such a component  C of S g with R c C. In fact, since R is 
j-small and j-resonant, we have the resonance bound (4b/E)(d})/Vj. 

Corollary 9. Let R be a nonempty subset of Z v. If R is a com- 
ponent of S g that is k -  1-small, then R is k -  1-resonant. 

7. C O N V E R G E N C E  OF THE R E N O R M A L I Z A T I O N  

The goal is to show that the renormalization process converges in 
reasonable-sized regions with high probability. In other words, the goal is 
to show that for large k the probability that a reasonable-sized region is 
not k-renormalized is small. This is accomplished b y  a series of 
propositions. The starting point is to show that the probability that a fixed 
region D is a component  of S~ is small. 

The lemma on resonant subsets shows that for large k a fixed set R is 
unlikely to be a small, isolated subset of a component  of S~, since then it 
would be resonant. It follows that a large set D is very unlikely to be a 
component  of S g. The reason is that such a set would have many small, 
isolated subsets, and it would be very unlikely that they would all be 
resonant. 

Proposition 10. Fix a nonempty subset D of 77 ~'. For every q < oe 
there is a constant C <  ~ and a constant b > 0  such that when the 
propagation satisfies the b-bound, then 

P[D is a component  of S g |  ~< C/d q (33) 

Proof Outline. There are two cases to consider: either D is k - 1 -  
small, or it is not. 

If D is not k -  1-small, then the statistical mechanical analysis of 
Fr6hlich and Spencer (4) shows that D has many small, isolated subsets R 
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on various smaller scales, down to scale - 1 .  For scales j ~> 0 these subsets 
R are each j-small and j + 1-isolated from D \ R  for some j < k. It follows 
from the lemma on resonant subsets that each such R is j-resonant for the 
appropriate j. 

Since on each scale j the R are j +  1-isolated, their resonances are 
independent events. Hence the probability that they are all resonant is the 
product of the probabilities. These probabilities are individually small. In 
fact, they are given by a small constant times dyTf 1 for j~>0 (by the 
resonance bound), and by a small constant for j =  -1 .  

The different scales j are not independent, but the probability of the 
event do of resonances in the isolated subsets on all scales may be estimated 
in terms of the probabilities of the events ~ of resonances on the scales j. 
Let rj be a sequence with 52 rj = 1. Since d o is the intersection of the gj, we 
have the estimate 

p[do.]...< I~I pie.If, (34) 
j -  --1 

The factors rj approach zero. However, if the probabilities decrease very 
rapidly with j, the probability that D is a component of S g will still be 
bounded by a product of individual small numbers. 

A sufficiently rapid decrease for the above argument to work is that 
the resonance growth parameter ~ > 0. The small factors on scale j/> 0 are 
then d;Tf ' = d• e x p ( - d ; ) .  

The estimate on the number of small, isolated subsets is based on the 
assumption that the distance growth parameter p <2,  so the spacing 
between distance scales is not too large. The result is that if D is not k -  1- 
small, the number of these subsets exceeds a constant C times log dk. Thus, 
if e -~ is the small factor for such a subset, then the probability is bounded 
by exp( - Ck log dk) = dk ok. 

The other case is when D is k -  1-small. By the corollary on resonant 
subsets, D is k -1 - r e sonan t .  This has a very small probability, by the 
resonance bound. | 

Proposition 11. Fix x ~ 2  v. For every q < oo there is a constant 
C < oo and a constant b > 0 such that when the propagation satisfies the 
b-bound, then 

PEx ~ sg.] ~< c/a~ (35) 

Proof Outline. The probability to estimate is 

P[D is a component of Sg] (36) 
x c O  
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where D ranges over subsets of 2 v. The new problem is to show that the 
number of subsets D with many small, isolated subsets is dominated by the 
small probability that such subsets exist. In fact, Fr6hlich and Spencer 
show that this summing over subsets merely contributes a fixed mul- 
tiplicative factor for each such subset. | 

Proposition 12. Fix x ~ Z v. For  every p < oo there is a constant 
C < oo and a constant b > 0 such that when the propagation satisfies the 
b-bound, then 

P [ x  is not k-renormalized] ~< C/d p (37) 

Proof. This follows from the fact that x is not k-renormalized if and 
only if x is in the union of the S g for j >~ k. Therefore, the probability of this 
event is bounded by 

PEx s,q c/dj  c/d  (381 
j = k  j - -k  

if q is taken large enough. [ 

Proposition 13. For every p, r < oo there exists a constant C < 
and a constant b > 0 such that when the propagation satisfies the b-bound, 
then for every region A with diam A ~< d;, 

P[A is not k-renormalized] ~< C/d~ (39) 

Proof. The probability to be estimated is bounded by 

P [ x  is not k-renormalized] ~< Cd;r/d q (40) 
x E A  

Take q such that q - v r  : p .  I 

Let m < oo be the prescribed decay constant. We know from the renor- 
malization argument that in k-renormalized regions A the Green's function 
satisfies the decay bound for ] x - y l  >~dk/5. Thus, the probability of a 
violation of the bound (a large matrix element) in a region A is bounded 
by the probability that the region is not k-renormalized. 

Proposition 14. Let m < oo be a prescribed decay constant. For 
every p < oo there exists a constant C < oo and a constant b > 0 such that 
when the propagation satisfies the b-bound and E is in the appropriate 
interval, then for every N <  o% 

P[3x,r  [ ( ( ~ , , , ( H - E - i e )  l~o)]>em(N IxI~]~C/NP (41) 

Proof Outline. There are two cases. 
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If Ix] >~ N/2, then use a perturbation argument on all scales larger than 
x. The probability of a violation on some scale is bounded by the sum of 
the probabilities of violations on each scale. The previous proposition then 
shows that a matrix element exceeding e mlxl is unlikely. 

If I xl ~< N/2, then use the same proof on scales larger than N/2. On 
scale N/2 the resonance bound is used to show that a norm exceeding e raN~2 
is unlikely, and hence a matrix element e m ( N -  Ixl) iS unlikely. | 

Theorem 1 follows from this proposition, by the following argument 
(Borel-Cantelli lemma). The probability that the bound is violated for 
infinitely many N is bounded, for each No, by the probability that the 
bound is violated for some N/> No, which in turn is bounded by the sum 
~2~~ GIN p. This sum is arbitrarily small when No is large enough. 
Therefore the probability that the bound is violated for infinitely many N 
must be zero. 
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